Nanomaterials-induced toxicity on cardiac myocytes and tissues, and emerging toxicity assessment techniques

Sci Total Environ. 2021 Aug 10;800:149584. doi: 10.1016/j.scitotenv.2021.149584. Online ahead of print.


The extensive production and use of nanomaterials have resulted in the continuous release of nano-sized particles into the environment, and the health risks caused by exposure to these nanomaterials in the occupational population and the general population cannot be ignored. Studies have found that particle exposure is closely related to cardiovascular disease. In addition, there have been many reports that nanomaterials can enter the heart tissue, accumulate and then cause damage. Therefore, in the present article, literature related to nanomaterials-induced cardiotoxicity in recent years was collected from the PubMed database, and then organized and summarized to form a review. This article mainly discusses heart damage caused by nanomaterials from the following three aspects: Firstly, we summarize the research 8 carbon nanotubes, etc. Secondly, we discuss in depth the possible underlying mechanism of the damage to the heart caused by nanoparticles. Oxidative stress damage, mitochondrial damage, inflammation and apoptosis have been found to be key factors. Finally, we summarize the current research models used to evaluate the cardiotoxicity of nanomaterials, highlight reliable emerging technologies and in vitro models that have been used for toxicity evaluation of environmental pollutants in recent years, and indicate their application prospects.

PMID:34399324 | DOI:10.1016/j.scitotenv.2021.149584

Full Text Link: Read More

Generated by Feedzy